Multiple Solutions for Asymptotically Linear Elliptic Systems
نویسندگان
چکیده
منابع مشابه
Multiple Solutions for Asymptotically Linear Resonant Elliptic Problems
In this paper we establish the existence of multiple solutions for the semilinear elliptic problem (1.1) −∆u = g(x, u) in Ω, u = 0 on ∂Ω, where Ω ⊂ RN is a bounded domain with smooth boundary ∂Ω, a function g: Ω×R→ R is of class C1 such that g(x, 0) = 0 and which is asymptotically linear at infinity. We considered both cases, resonant and nonresonant. We use critical groups to distinguish the c...
متن کاملBifurcation Problem for Biharmonic Asymptotically Linear Elliptic Equations
In this paper, we investigate the existence of positive solutions for the ellipticequation $Delta^{2},u+c(x)u = lambda f(u)$ on a bounded smooth domain $Omega$ of $R^{n}$, $ngeq2$, with Navier boundary conditions. We show that there exists an extremal parameter$lambda^{ast}>0$ such that for $lambda< lambda^{ast}$, the above problem has a regular solution butfor $lambda> lambda^{ast}$, the probl...
متن کاملbifurcation problem for biharmonic asymptotically linear elliptic equations
in this paper, we investigate the existence of positive solutions for the ellipticequation $delta^{2},u+c(x)u = lambda f(u)$ on a bounded smooth domain $omega$ of $r^{n}$, $ngeq2$, with navier boundary conditions. we show that there exists an extremal parameter$lambda^{ast}>0$ such that for $lambda< lambda^{ast}$, the above problem has a regular solution butfor $lambda> lambda^{ast}$, the probl...
متن کاملDelay-Dependent Robust Asymptotically Stable for Linear Time Variant Systems
In this paper, the problem of delay dependent robust asymptotically stable for uncertain linear time-variant system with multiple delays is investigated. A new delay-dependent stability sufficient condition is given by using the Lyapunov method, linear matrix inequality (LMI), parameterized first-order model transformation technique and transformation of the interval uncertainty in to the norm ...
متن کاملMultiple Solutions for Biharmonic Equations with Asymptotically Linear Nonlinearities
Ruichang Pei1, 2 1 Center for Nonlinear Studies, Northwest University, Xi’an 710069, China 2 Department of Mathematics, Tianshui Normal University, Tianshui 741001, China Correspondence should be addressed to Ruichang Pei, [email protected] Received 26 February 2010; Revised 2 April 2010; Accepted 22 April 2010 Academic Editor: Kanishka Perera Copyright q 2010 Ruichang Pei. This is an open access ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Mathematical Analysis and Applications
سال: 2001
ISSN: 0022-247X
DOI: 10.1006/jmaa.2000.7236